Qual è la differenza tra una relazione di congruenza e una relazione di equivalenza?


Risposta 1:

La risposta di David Joyce è buona, ma c'è un'altra definizione per la relazione di congruenza che ho visto (Algebra di Hungerford):

Sia G un monoide con una relazione di equivalenza ~.

~ è una relazione di congruenza se

fora,b,c,din[math]G[/math],if[math]a[/math] [math]b[/math]and[math]c[/math] [math]d[/math]then[math]ac[/math] [math]bd.[/math]for a, b, c, d in [math]G[/math], if [math]a [/math]~[math] b[/math] and [math] c [/math]~[math] d[/math] then [math]ac [/math]~[math] bd.[/math]

Thisisusefultodefinenormalsubgroups,andquotientgroupsbecauseG/ isagroupwithabinaryoperationthatrespectsthecongruencerelation.This is useful to define normal subgroups, and quotient groups because G/~ is a group with a binary operation that respects the congruence relation.


Risposta 2:

Therearetworelationsknownascongruencerelations.Oneisingeometryandreferstocongruentfigures.Twofiguresarecongruentifthereisarigidmotionthatmovesonetotheother.Theotherisinnumbertheoryandreferstointegerscongruentmodulonwhere[math]n[/math]issomefixedinteger.Twointegersarecongruentmodulo[math]n[/math]iftheirdifferenceisdivisibleby[math]n.[/math]Thissecondcongruencerelationhasbeenextendedtoelementsofaringmoduloanideal.There are two relations known as congruence relations. One is in geometry and refers to congruent figures. Two figures are congruent if there is a rigid motion that moves one to the other. The other is in number theory and refers to integers congruent modulo n where [math]n[/math] is some fixed integer. Two integers are congruent modulo [math]n[/math] if their difference is divisible by [math]n.[/math] This second congruence relation has been extended to elements of a ring modulo an ideal.

Entrambi sono rapporti di equivalenza. Potrebbero esserci anche altre relazioni di equivalenza che sono chiamate relazioni di congruenza.

Per la risposta alla tua domanda, una relazione di congruenza è una relazione di equivalenza particolare che è diventata una relazione di congruenza.